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Abstract— The majority of commercial UHF RFID tags are
based on the dipole antenna, and it is well known that tag
performance degrades significantly when the tag is placed
near a conducting surface. Here, we present a new antenna
that operates as a dipole when in free space, but when placed
on a conducting surface, it operates as a relatively efficient
microstrip antenna. The antenna is shown to have near-
optimal free-space performance and yield a peak gain of
approximately 6 dBi of effective gain on a copper surface.

Index Terms— Dipole antenna, microstrip antenna, passive
UHF RFID tags, RFID.

I. INTRODUCTION

Several independent researchers have verified a classic
problem: the performance of passive UHF RFID tags
degrade when placed near a metal surface [1]–[4]. This
is an unfortunate situation, since industry continues to
seek a low-cost way to tag metal assets. Microstrip-based
antennas modified for operation with RFID ICs (e.g., [5]–
[8]) offer a useful alternative, but are considerably more
expensive to fabricate. Often, industry simply provides a
thin (e.g., 3 to 6 mm) low dielectric material such as a
flexible foam in order to provide enough separation from
the metal surface to provide adequate, though severely
degraded, performance. A foam separation of 3.2 mm can
yield a performance degradation of 16 dB or more over
free-space performance, resulting in a reduction in read
distance of about 85% [4].

Here, we present a type of dipole / microstrip antenna
with classical features and a 3.18 mm low dielectric
material. The tag is designed so that it presents both a
near-optimal impedance match when operating as a dipole
(in free space) and an excellent (≈ 6 dBi) performance
when operating as a microstrip (on a flat metal surface).

II. BACKGROUND

A passive UHF RFID system [9] consists of a transpon-
der, also called a tag, and an interrogator, also called a
reader. The reader provides power via RF energy, com-
mands via a protocol (e.g., [10]), and timing. The tag
consists of an IC and an antenna. The tag communicates
by modulating the IC impedance, which changes the scat-
tering characteristics of the antenna, which can be detected
by the reader.

For an RFID tag to operate, the IC must receive suf-
ficient power to run the circuitry and provide enough

backscatter signal strength for the reader to detect the
response. For many systems, we can assume that the
system is limited in the forward channel (reader to tag),
and if the tag responds, then the reader will detect the
response. This is not always the case, but it is a good
working assumption.

The majority of passive UHF RFID tags are manufac-
tured using a high-speed, low-cost, roll-to-roll process.
Introducing a low-cost, thin foam dielectric spacer such as
high density polyethylene is attractive because it introduces
little additional cost and is easily integrated into the roll-to-
roll process. In fact, many converters are able to produce
these “foam attached tags,” or FAT tags, with minimal
change to existing equipment. The commercial interest in
these tags are based on a combination of low additional
material cost and the ability to easily integrate to existing
manufacturing equipment and processes, which results in
a low-cost product.

As with many antennas, the bandwidth of an RFID tag
is typically limited by the impedance of the antenna. The
reactive IC impedance can further aggrivate this problem.
Commercial RFID use a printed (or “ribbon,” or “flat”)
dipole because of the low manufacturing cost involved.
Further, they are commonly limited to about 92 mm
in length in order to fit comfortably on a 101.6 mm
wide label. At 915 MHz, a half-wave resonant dipole is
approximately 160 mm long, so the antenna is electrically
short, and commonly narrow, causing the antenna to have a
large quality factor Q (nominally 15) and thus be relatively
sensitive to the environment. In this paper, we consider
operation within the UHF ISM band in North America
that ranges between 900 and 930 MHz.

The impedance of a dipole antenna near the fundamental
resonant mode is approximately that of a series RLC cir-
cuit. It is well-known that placing a dipole above a ground
plane significantly decreases the radiating resistance, re-
duces the resonant frequency, and dramatically increases
the Q of the antenna [11]. Typically, the dipole antenna
consists of two elements that are fed differentially, but a
microstrip consists of a single conducting element and is
fed at a single location with respect to ground. Common
microstrip feeds include a probe, direct contact along
one of the edges, or some other form of coupling. The
impedance of a microstrip antenna at resonance behaves
more like that of a parallel RLC circuit.
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Fig. 1. Proposed RFID tag geometry. Here, L=142 mm, W=30
mm, G=16 mm, B=12 mm, and t=5 mm.

The T-match [12] is used to modify the impedance of a
dipole antenna, and is commonly use RFID tags [13]. The
T-match is normally used to decrease the resistance and to
increase the reactance to provide a conjugate impedance
to the IC impedance. However, the same structure may
also be used to feed an identical microstrip antenna [14].
The interesting question is whether one is able to use
a T-match to effectively modify a dipole impedance and
simultaneously to feed and provide an impedance match
for a microstrip antenna. I.e., can a single antenna using
a T-match be both a dipole and a microstrip antenna? If
so, one could develop FAT tags that perform well in free
space and when attached to metal assets.

III. PROPOSED ANTENNA

The proposed tag antenna shown in Figure 1 is a flat
dipole that uses a T-match matching circuit. The design IC
impedance Zc = 12 − j133 Ohms. Permanently attached
to one side of the antenna is a 3.18 mm HDPE foam
(εr = 1.09 and tan δ = 0.001). The antenna, IC, and
foam substrate comprise the proposed tag. When the tag
is in free space, the tag operates as a “normal” dipole-
based tag. However, when the dielectric is placed on a
ground plane, the tag behaves as a microstrip antenna.
The substrate may include a pressure-sensitive adhesive
to attach it to (potentially metal) objects.

When operating as a microstrip antenna, the feed be-
haves like a classic edge-feed and the T section be-
haves like simple transmission lines. The relatively short
transmission lines primarily add inductance to the feed
impedance. Unlike a classic edge-fed antenna, the pro-
posed structure uses two symmetric feeds to achieve a
balanced feed structure.

To design the antenna, we arbitrarily start with W equal
to 30 mm. Next, the parameter L is chosen so that the
antenna, as a microstrip, has a resonant frequency of
approximately 945 MHz, so the antenna, as a microstrip, is
designed to operate below resonance where the resistance
is smaller and the reactance is a modestly inductive. The
remaining parameters G, B, and t are varied until a suitable
tradeoff between the dipole and microstrip impedance
is achieved. We note that the proposed antenna is too
large for many practical applications; however, the same
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Fig. 2. Simulated impedance of antenna as a dipole and
microstrip.

methodology can be applied to a more compact geometry
if desired.

Figure 2 shows the simulated resistance R and reactance
X of the antenna when in free space (Zf

a = Rf
a+jXf

a ) be-
having as a dipole, and when on metal (Zm

a = Rm
a +jXm

a )
behaving as a microstrip. The wide, long dipole has a very
low Q, as expected, and thus we see almost no change in
impedance over the band. As a microstrip, we see a sig-
nificant increase in resistance and reactance at the higher
ferquencies as the antenna approaches resonance. Clearly,
Zm

a achieves a less-than-optimal impedance match; power
transfer efficiency is being traded for bandwidth.

We can define the power transfer efficiency between the
tag and IC as [15]

τ =
4RaRc

|Za + Zc|2
,

where the subscripts a and c denote the antenna and chip
resistance or reactance, respectively. Figure 3 shows how
τf and τm change with frequency. We can see a near-
optimal match as dipole, and as a microstrip, we see the
power transfer efficiency range between -1 and -6 dB loss
over the band.

Next, we experimentally evaluate the tag performance.
Based on simulated results of the antenna efficiency η and
directivity D, we can predict the effective gain, which we
define as Geff = ητD.

To validate the results, we performed a simple experi-
ment. The proposed tag, shown in Figure 4, is placed two
meters from an instrumented RFID reader in a partially
anechoic environment. The transmitting antenna uses a
linearly polarized patch antenna with a gain of 6 dBi.
The reader is programmed to operate at a fixed frequency
and power setting. At each frequency, the power setting is
varied until we find the lowest power setting in which the
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Fig. 3. Power transfer efficiency vs. frequency of proposed
antenna as a dipole and microstrip calculated from simulated
antenna impedance.

Fig. 4. Picture of the proposed RFID tag mounted on copper
plane.

reader is able to successfully read the tag in at least 50%
of the read attempts. Generally, the power delivered to the
IC, using the notation of [16], is expressed as:

Pr =
PtGtGr

(4πλ)2d2
τρ .

(We use this notation only within this paragraph.) Here,
Pt is the transmitted power, Gt is the gain of the transmit
antenna (6 dBi), Gr is the gain of the receive (tag) antenna,
λ = c/f is the free space wavelength (≈ 0.327 m), d is
the distance separating the two antennas (2 m), and ρ is
the polarization match. Since both antennas are linearly
polarized and aligned, we assume ρ = 1.

Note that the simulated Df = 3.4 dBi. We observe a
minimum turn-on power of the tag in free space of 15.9
dBm, and assuming τf = ρ = η = 1, we calculate the
minimum turn-on power of the IC to be −12.4 dBm. Using
that, we can estimate Gm

eff . Admittedly, this is an imperfect
metric and has potential problems, for example, if the IC
impedance is different than anticipated, or the simulated
and actual antenna impedance differ. However, the results
do show consistent agreement with simulation, so we have
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Fig. 5. Effective gain of proposed antenna as a dipole and
microstrip.

some reason to trust the results.
We compare the predicted (via simulation) and measured

(via minimum reader turn-on power) effective gain of
the proposed antenna in Figure 5. Here, we see good
consistency with the free-space measurement and a flat
Gf

eff with respect to frequency. More interesting is the
performance of the tag as a microstrip. Again, we see
excellent agreement with prediction, except there is a
difference in frequency of peak performance by about 9
MHz, or 1%. This is likely due to the dielectric constant
of the foam that we now estimate is 1.098 instead of the
previously assumed 1.09. A revised length of 143.4 mm
would be recommended to center the peak gain of the
antenna behaving as a microstrip.

Note that the peak Gm
eff > Gf

eff primarily because
Dm > Df , but the bandwidth of the tag on metal is
substantially less. At the edge of the band, the tag suffers
from a considerable reduction in Geff , but is still good
relative to that of a dipole.

IV. CONCLUSIONS

We propose an antenna that illustrates the viability
of constructing an RFID tag with a thin foam backing
material that is capable of operating efficiently both as a
dipole antenna (in free space) and as a microstrip antenna
(attached to metal). The antenna yields near-perfect free-
space performance and a peak on-metal performance of
approximately 6 dBi. The antenna uses a classical T-
match to a dipole, which, when attached to metal, operates
as a microstrip antenna with balanced edge feeds. We
operate the microstrip below its self resonance, where the
resistance is low, reducing the peak performance by 1 dB
to achieve improved bandwidth.
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