

An RFID Tag Capable of Free-Space and On-Metal Operation

Naaser A. Mohammed, Mutharasu Sivakumar, and Daniel D. Deavours

Information and Telecommunications Technology Center
University of Kansas, Lawrence, KS 66045, USA

Abstract— The majority of commercial UHF RFID tags are based on the dipole antenna, and it is well known that tag performance degrades significantly when the tag is placed near a conducting surface. Here, we present a new antenna that operates as a dipole when in free space, but when placed on a conducting surface, it operates as a relatively efficient microstrip antenna. The antenna is shown to have near-optimal free-space performance and yield a peak gain of approximately 6 dBi of effective gain on a copper surface.

Index Terms— Dipole antenna, microstrip antenna, passive UHF RFID tags, RFID.

I. INTRODUCTION

Several independent researchers have verified a classic problem: the performance of passive UHF RFID tags degrade when placed near a metal surface [1]–[4]. This is an unfortunate situation, since industry continues to seek a low-cost way to tag metal assets. Microstrip-based antennas modified for operation with RFID ICs (e.g., [5]–[8]) offer a useful alternative, but are considerably more expensive to fabricate. Often, industry simply provides a thin (e.g., 3 to 6 mm) low dielectric material such as a flexible foam in order to provide enough separation from the metal surface to provide adequate, though severely degraded, performance. A foam separation of 3.2 mm can yield a performance degradation of 16 dB or more over free-space performance, resulting in a reduction in read distance of about 85% [4].

Here, we present a type of dipole / microstrip antenna with classical features and a 3.18 mm low dielectric material. The tag is designed so that it presents both a near-optimal impedance match when operating as a dipole (in free space) and an excellent (≈ 6 dBi) performance when operating as a microstrip (on a flat metal surface).

II. BACKGROUND

A passive UHF RFID system [9] consists of a transponder, also called a tag, and an interrogator, also called a reader. The reader provides power via RF energy, commands via a protocol (e.g., [10]), and timing. The tag consists of an IC and an antenna. The tag communicates by modulating the IC impedance, which changes the scattering characteristics of the antenna, which can be detected by the reader.

For an RFID tag to operate, the IC must receive sufficient power to run the circuitry and provide enough

backscatter signal strength for the reader to detect the response. For many systems, we can assume that the system is limited in the forward channel (reader to tag), and if the tag responds, then the reader will detect the response. This is not always the case, but it is a good working assumption.

The majority of passive UHF RFID tags are manufactured using a high-speed, low-cost, roll-to-roll process. Introducing a low-cost, thin foam dielectric spacer such as high density polyethylene is attractive because it introduces little additional cost and is easily integrated into the roll-to-roll process. In fact, many converters are able to produce these “foam attached tags,” or FAT tags, with minimal change to existing equipment. The commercial interest in these tags are based on a combination of low additional material cost and the ability to easily integrate to existing manufacturing equipment and processes, which results in a low-cost product.

As with many antennas, the bandwidth of an RFID tag is typically limited by the impedance of the antenna. The reactive IC impedance can further aggravate this problem. Commercial RFID use a printed (or “ribbon,” or “flat”) dipole because of the low manufacturing cost involved. Further, they are commonly limited to about 92 mm in length in order to fit comfortably on a 101.6 mm wide label. At 915 MHz, a half-wave resonant dipole is approximately 160 mm long, so the antenna is electrically short, and commonly narrow, causing the antenna to have a large quality factor Q (nominally 15) and thus be relatively sensitive to the environment. In this paper, we consider operation within the UHF ISM band in North America that ranges between 900 and 930 MHz.

The impedance of a dipole antenna near the fundamental resonant mode is approximately that of a series RLC circuit. It is well-known that placing a dipole above a ground plane significantly decreases the radiating resistance, reduces the resonant frequency, and dramatically increases the Q of the antenna [11]. Typically, the dipole antenna consists of two elements that are fed differentially, but a microstrip consists of a single conducting element and is fed at a single location with respect to ground. Common microstrip feeds include a probe, direct contact along one of the edges, or some other form of coupling. The impedance of a microstrip antenna at resonance behaves more like that of a parallel RLC circuit.

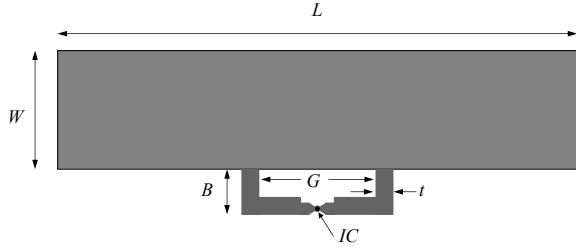


Fig. 1. Proposed RFID tag geometry. Here, $L=142$ mm, $W=30$ mm, $G=16$ mm, $B=12$ mm, and $t=5$ mm.

The T-match [12] is used to modify the impedance of a dipole antenna, and is commonly used in RFID tags [13]. The T-match is normally used to decrease the resistance and to increase the reactance to provide a conjugate impedance to the IC impedance. However, the same structure may also be used to feed an identical microstrip antenna [14]. The interesting question is whether one is able to use a T-match to effectively modify a dipole impedance and simultaneously to feed and provide an impedance match for a microstrip antenna. I.e., can a single antenna using a T-match be both a dipole and a microstrip antenna? If so, one could develop FAT tags that perform well in free space and when attached to metal assets.

III. PROPOSED ANTENNA

The proposed tag antenna shown in Figure 1 is a flat dipole that uses a T-match matching circuit. The design IC impedance $Z_c = 12 - j133$ Ohms. Permanently attached to one side of the antenna is a 3.18 mm HDPE foam ($\epsilon_r = 1.09$ and $\tan \delta = 0.001$). The antenna, IC, and foam substrate comprise the proposed tag. When the tag is in free space, the tag operates as a “normal” dipole-based tag. However, when the dielectric is placed on a ground plane, the tag behaves as a microstrip antenna. The substrate may include a pressure-sensitive adhesive to attach it to (potentially metal) objects.

When operating as a microstrip antenna, the feed behaves like a classic edge-feed and the T section behaves like simple transmission lines. The relatively short transmission lines primarily add inductance to the feed impedance. Unlike a classic edge-fed antenna, the proposed structure uses two symmetric feeds to achieve a balanced feed structure.

To design the antenna, we arbitrarily start with W equal to 30 mm. Next, the parameter L is chosen so that the antenna, as a microstrip, has a resonant frequency of approximately 945 MHz, so the antenna, as a microstrip, is designed to operate below resonance where the resistance is smaller and the reactance is a modestly inductive. The remaining parameters G , B , and t are varied until a suitable tradeoff between the dipole and microstrip impedance is achieved. We note that the proposed antenna is too large for many practical applications; however, the same

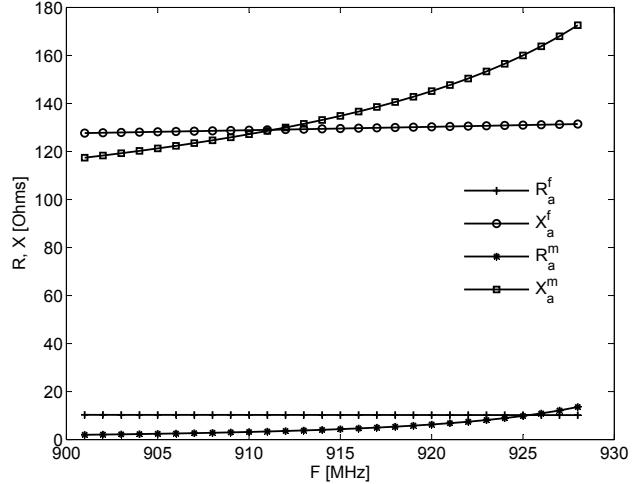


Fig. 2. Simulated impedance of antenna as a dipole and microstrip.

methodology can be applied to a more compact geometry if desired.

Figure 2 shows the simulated resistance R and reactance X of the antenna when in free space ($Z_a^f = R_a^f + jX_a^f$) behaving as a dipole, and when on metal ($Z_a^m = R_a^m + jX_a^m$) behaving as a microstrip. The wide, long dipole has a very low Q , as expected, and thus we see almost no change in impedance over the band. As a microstrip, we see a significant increase in resistance and reactance at the higher frequencies as the antenna approaches resonance. Clearly, Z_a^m achieves a less-than-optimal impedance match; power transfer efficiency is being traded for bandwidth.

We can define the power transfer efficiency between the tag and IC as [15]

$$\tau = \frac{4R_a R_c}{|Z_a + Z_c|^2},$$

where the subscripts a and c denote the antenna and chip resistance or reactance, respectively. Figure 3 shows how τ^f and τ^m change with frequency. We can see a near-optimal match as dipole, and as a microstrip, we see the power transfer efficiency range between -1 and -6 dB loss over the band.

Next, we experimentally evaluate the tag performance. Based on simulated results of the antenna efficiency η and directivity D , we can predict the *effective gain*, which we define as $G_{\text{eff}} = \eta\tau D$.

To validate the results, we performed a simple experiment. The proposed tag, shown in Figure 4, is placed two meters from an instrumented RFID reader in a partially anechoic environment. The transmitting antenna uses a linearly polarized patch antenna with a gain of 6 dBi. The reader is programmed to operate at a fixed frequency and power setting. At each frequency, the power setting is varied until we find the lowest power setting in which the

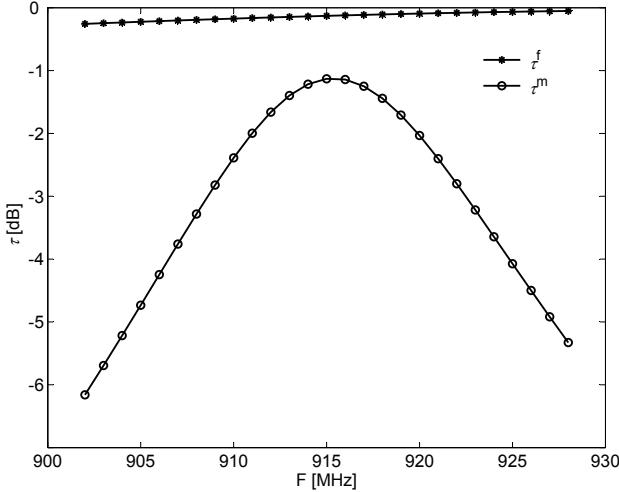


Fig. 3. Power transfer efficiency vs. frequency of proposed antenna as a dipole and microstrip calculated from simulated antenna impedance.

Fig. 4. Picture of the proposed RFID tag mounted on copper plane.

reader is able to successfully read the tag in at least 50% of the read attempts. Generally, the power delivered to the IC, using the notation of [16], is expressed as:

$$P_r = \frac{P_t G_t G_r}{(4\pi\lambda)^2 d^2} \tau \rho.$$

(We use this notation only within this paragraph.) Here, P_t is the transmitted power, G_t is the gain of the transmit antenna (6 dBi), G_r is the gain of the receive (tag) antenna, $\lambda = c/f$ is the free space wavelength (≈ 0.327 m), d is the distance separating the two antennas (2 m), and ρ is the polarization match. Since both antennas are linearly polarized and aligned, we assume $\rho = 1$.

Note that the simulated $D^f = 3.4$ dBi. We observe a minimum turn-on power of the tag in free space of 15.9 dBm, and assuming $\tau^f = \rho = \eta = 1$, we calculate the minimum turn-on power of the IC to be -12.4 dBm. Using that, we can estimate G_{eff}^m . Admittedly, this is an imperfect metric and has potential problems, for example, if the IC impedance is different than anticipated, or the simulated and actual antenna impedance differ. However, the results do show consistent agreement with simulation, so we have

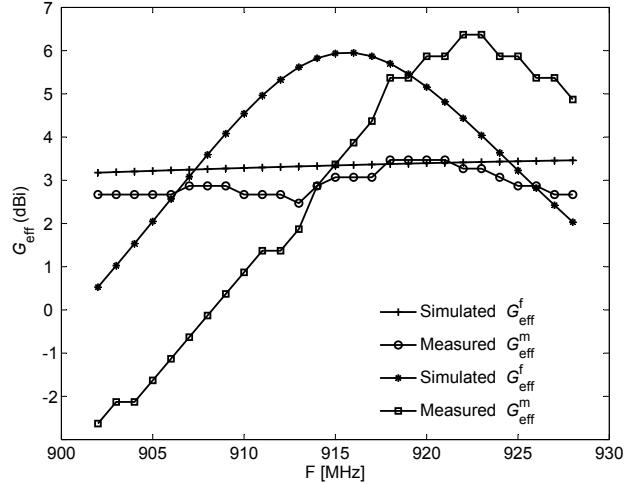


Fig. 5. Effective gain of proposed antenna as a dipole and microstrip.

some reason to trust the results.

We compare the predicted (via simulation) and measured (via minimum reader turn-on power) effective gain of the proposed antenna in Figure 5. Here, we see good consistency with the free-space measurement and a flat G_{eff}^f with respect to frequency. More interesting is the performance of the tag as a microstrip. Again, we see excellent agreement with prediction, except there is a difference in frequency of peak performance by about 9 MHz, or 1%. This is likely due to the dielectric constant of the foam that we now estimate is 1.098 instead of the previously assumed 1.09. A revised length of 143.4 mm would be recommended to center the peak gain of the antenna behaving as a microstrip.

Note that the peak $G_{\text{eff}}^m > G_{\text{eff}}^f$ primarily because $D^m > D^f$, but the bandwidth of the tag on metal is substantially less. At the edge of the band, the tag suffers from a considerable reduction in G_{eff} , but is still good relative to that of a dipole.

IV. CONCLUSIONS

We propose an antenna that illustrates the viability of constructing an RFID tag with a thin foam backing material that is capable of operating efficiently both as a dipole antenna (in free space) and as a microstrip antenna (attached to metal). The antenna yields near-perfect free-space performance and a peak on-metal performance of approximately 6 dBi. The antenna uses a classical T-match to a dipole, which, when attached to metal, operates as a microstrip antenna with balanced edge feeds. We operate the microstrip below its self resonance, where the resistance is low, reducing the peak performance by 1 dB to achieve improved bandwidth.

REFERENCES

- [1] D. M. Dobkins and S. Weigand, "Environmental effects on RFID tag antennas," in *IEEE MTT-S International Microwave Symposium*, Long Beach, CA, June 2005, pp. 4–7.
- [2] J. D. Griffin, G. D. Durgin, A. Haldi, and B. Kippelen, "RF tag antenna performance on various materials using radio link budgets," *Antennas and Wireless Propagation Letters*, vol. 5, no. 1, pp. 247–250, Dec. 2006.
- [3] K. M. Ramakrishnan and D. D. Deavours, "Performance benchmarks for passive UHF RFID tags," in *13th GI/ITG Conference on Measurement, Modeling, and Evaluation of Computer and Communication Systems*, Nuremberg, Germany, Mar. 2006, pp. 137–154.
- [4] S. R. Aroor and D. D. Deavours, "Evaluation of the state of passive UHF RFID: An experimental approach," *IEEE Systems Journal*, vol. 1, no. 2, pp. 168–176, 2007.
- [5] M. Hirvonen, P. Pursula, K. Jaakkola, and K. L. Laukkonen, "Planar inverted-F antenna for radio frequency identification," *Electronics Letters*, vol. 40, no. 14, pp. 848–850, July 2004.
- [6] L. Ukkonen, L. Sydanheimo, and M. Kivikoski, "A novel tag design using inverted-F antenna for radio frequency identification of metallic objects," in *2004 IEEE/Sarnoff Symposium on Advances in Wired and Wireless Communications*, 2004, pp. 91–94.
- [7] H. Kwon and B. Lee, "Compact slotted planar inverted-F RFID tag mountable on metallic objects," *Electronics Letters*, vol. 41, no. 24, pp. 1308–1310, Nov. 2005.
- [8] H. W. Son, G. Y. Choi, and C. S. Pyo, "Design of wideband RFID tag antenna for metallic surfaces," *Electronics Letters*, vol. 42, no. 5, pp. 263–265, Mar. 2006.
- [9] D. M. Dobkins, *The RF in RFID: Passive UHF RFID in Practice*. Burlington, MA: Newnes, 2007.
- [10] International Organization for Standards, "Information technology – radio frequency identification for item management – part 6: Parameters for air interface communications at 860 MHz to 960 MHz," ISO/IEC, Tech. Rep. 18000-6:2004/Amd 1:2006, 2006.
- [11] J. C.-E. Sten, A. Hujanen, and P. K. Koivisto, "Quality factor of an electrically small antenna radiating close to a conducting plane," *IEEE Transactions on Antennas and Propagation*, vol. 49, no. 5, pp. 829–837, May 2001.
- [12] S. Uda, *Yagi-Uda antenna*. Tohoku University: Research Institute of Electrical Communication, 1954.
- [13] G. Marrocco, "The art of UHF RFID antenna design: impedance-matching and size-reduction techniques," *IEEE Antennas and Propagation Magazine*, vol. 50, no. 1, pp. 66–79, Feb. 2008.
- [14] M. Eunni, M. Sivakumar, and D. D. Deavours, "A novel planar microstrip antenna design for UHF RFID," *Journal of Systemics, Cybernetics and Informatics*, vol. 5, no. 1, pp. 6–10, Jan. 2007.
- [15] P. V. Nikitin, K. V. S. Rao, S. F. Lam, V. Pillai, R. Martinez, and H. Heinrich, "Power reflection coefficient analysis for complex impedances in RFID tag design," *IEEE Transactions on Microwave Theory and Technique*, vol. 53, no. 9, pp. 2721–2725, Sept. 2005.
- [16] P. V. Nikitin and K. V. S. Rao, "Reply to 'Comments on 'Antenna design for UHF RFID tags: A review and a practical application''," *IEEE Transactions on Antennas and Propagation*, vol. 54, no. 6, pp. 1906–1908, June 2006.

射 频 和 天 线 设 计 培 训 课 程 推 荐

易迪拓培训(www.edatop.com)由数名来自于研发第一线的资深工程师发起成立，致力并专注于微波、射频、天线设计研发人才的培养；我们于 2006 年整合合并微波 EDA 网(www.mweda.com)，现已发展成为国内最大的微波射频和天线设计人才培养基地，成功推出多套微波射频以及天线设计经典培训课程和 ADS、HFSS 等专业软件使用培训课程，广受客户好评；并先后与人民邮电出版社、电子工业出版社合作出版了多本专业图书，帮助数万名工程师提升了专业技术能力。客户遍布中兴通讯、研通高频、埃威航电、国人通信等多家国内知名公司，以及台湾工业技术研究院、永业科技、全一电子等多家台湾地区企业。

易迪拓培训课程列表：<http://www.edatop.com/peixun/rfe/129.html>


射频工程师养成培训课程套装

该套装精选了射频专业基础培训课程、射频仿真设计培训课程和射频电路测量培训课程三个类别共 30 门视频培训课程和 3 本图书教材；旨在引领学员全面学习一个射频工程师需要熟悉、理解和掌握的专业知识和研发设计能力。通过套装的学习，能够让学员完全达到和胜任一个合格的射频工程师的要求…

课程网址：<http://www.edatop.com/peixun/rfe/110.html>

ADS 学习培训课程套装

该套装是迄今国内最全面、最权威的 ADS 培训教程，共包含 10 门 ADS 学习培训课程。课程是由具有多年 ADS 使用经验的微波射频与通信系统设计领域资深专家讲解，并多结合设计实例，由浅入深、详细而又全面地讲解了 ADS 在微波射频电路设计、通信系统设计和电磁仿真设计方面的内容。能让您在最短的时间内学会使用 ADS，迅速提升个人技术能力，把 ADS 真正应用到实际研发工作中去，成为 ADS 设计专家…

课程网址：<http://www.edatop.com/peixun/ads/13.html>

HFSS 学习培训课程套装

该套课程套装包含了本站全部 HFSS 培训课程，是迄今国内最全面、最专业的 HFSS 培训教程套装，可以帮助您从零开始，全面深入学习 HFSS 的各项功能和在多个方面的工程应用。购买套装，更可超值赠送 3 个月免费学习答疑，随时解答您学习过程中遇到的棘手问题，让您的 HFSS 学习更加轻松顺畅…

课程网址：<http://www.edatop.com/peixun/hfss/11.html>

CST 学习培训课程套装

该培训套装由易迪拓培训联合微波 EDA 网共同推出, 是最全面、系统、专业的 CST 微波工作室培训课程套装, 所有课程都由经验丰富的专家授课, 视频教学, 可以帮助您从零开始, 全面系统地学习 CST 微波工作的各项功能及其在微波射频、天线设计等领域的设计应用。且购买该套装, 还可超值赠送 3 个月免费学习答疑…

课程网址: <http://www.edatop.com/peixun/cst/24.html>

HFSS 天线设计培训课程套装

套装包含 6 门视频课程和 1 本图书, 课程从基础讲起, 内容由浅入深, 理论介绍和实际操作讲解相结合, 全面系统的讲解了 HFSS 天线设计的全过程。是国内最全面、最专业的 HFSS 天线设计课程, 可以帮助您快速学习掌握如何使用 HFSS 设计天线, 让天线设计不再难…

课程网址: <http://www.edatop.com/peixun/hfss/122.html>

13.56MHz NFC/RFID 线圈天线设计培训课程套装

套装包含 4 门视频培训课程, 培训将 13.56MHz 线圈天线设计原理和仿真设计实践相结合, 全面系统地讲解了 13.56MHz 线圈天线的工作原理、设计方法、设计考量以及使用 HFSS 和 CST 仿真分析线圈天线的具体操作, 同时还介绍了 13.56MHz 线圈天线匹配电路的设计和调试。通过该套课程的学习, 可以帮助您快速学习掌握 13.56MHz 线圈天线及其匹配电路的原理、设计和调试…

详情浏览: <http://www.edatop.com/peixun/antenna/116.html>

我们的课程优势:

- ※ 成立于 2004 年, 10 多年丰富的行业经验,
- ※ 一直致力并专注于微波射频和天线设计工程师的培养, 更了解该行业对人才的要求
- ※ 经验丰富的一线资深工程师讲授, 结合实际工程案例, 直观、实用、易学

联系我们:

- ※ 易迪拓培训官网: <http://www.edatop.com>
- ※ 微波 EDA 网: <http://www.mweda.com>
- ※ 官方淘宝店: <http://shop36920890.taobao.com>